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Modwyn-Hughes Parameter of Some Diatomie Crystals 
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The Moelwyn-Hughes parameter, C~ = [d(1/ fl)/dP]r and temperature derivative of adiabatic compres- 
sibility have been computed for f.c.c, and b.c.c, type ionic crystals with the central-force rigid-ion 
interaction model, and various methods of calculation. Some applications of the Moelwyn-Hughes 
parameter are discussed. An empirical relation between adiabatic compressibility and equilibrium 
internuclear distance of ionic crystals has been developed on the basis of the Moelwyn-Hughes param- 
eter. The validity of this empirical relation has been tested for diatomic alkali halide crystals. The 
results obtained are encouraging. 

Introduction 

Anderson (1966) gave a physical interpretation of the 
constants occurring in the equation of the variation of 
Young's modulus of elasticity with temperature ob- 
tained by Wachtman, Tefft, Lam & Apstein (1961) 
from experimental observations. He showed that the 
constant b occurring in the Wachtman equation which 
can also be written as 

is given by 
B~=Boo-bT exp ( -  To~T) (1) 

b=3Ryg/Vo (2) 

where 7 is the Grtineisen parameter, Bs the adiabatic 
bulk modulus of elasticity, Boo the values of Bs at ab- 
solute zero and one atmosphere pressure, v0 the average 
specific volume per atom at absolute zero, and g an- 
other physical constant independent of temperature. 
Following Chang (1967), it is termed the Anderson- 
Griineisen parameter and is given by 

= d(ln fl~)/dT 
d(ln v)/dT (3) 

where fl, is the adiabatic compressibility. 
Chang (1967) has also derived two simple expres- 

sions for g in terms of y, on the basis of the two inde- 
pendent relations between y and the change of com- 
pressibility with volume (Slater, 1939; Dugdale & 
Macdonald, 1953). These expressions can be written: 

g = 2 y - ~  (4) 

a=2r .  (5) 

Das, Keer & Rao (1963), Rao & Keer (1962), and 
Rao, Keer & Das (1962, 1963, 1964) have reported 
values of the Rao-Keer (RK) constant C,=[d(1/fl)/ 
dP]r, where fl is the isothermal compressibility coef- 
ficient, P the pressure, and T the absolute temperature, 
which relates intermolecular energy constants of non- 
polar as well as polar liquids to their various physical 
properties. Keer (1972) has also shown that the same 

RK constant (Ca) is characteristic of solids. In spite of 
two characteristic parameters ~, and g of solids, it is 
still a third parameter. Consequently the calculations 
of RK constants were repeated by Thakur (1975a, 
1975b) and Thakur & Pandey (1974a, 1975). 

This RK constant was reported as early as 1951 by 
Moelwyn-Hughes (1951, 1964). Thus we propose to 
call (71 the Moelwyn-Hughes parameter rather than 
the Rao-Keer constant. This parameter is merely the 
pressure derivative of the isothermal bulk modulus of 
elasticity at constant temperature. 

From thermodynamic principles (Thakur & Pandey, 
1974a) Ca can be related to the potential function ~a(r) 

Pr°3[ 6 (a"(r0)] (6) C1 = 1 -  ~ (a'"(r0) . . . .  ro- 

where r0 is the equilibrium interionic distance. 
Following Chang (1967), the temperature derivative 

of compressibility may be related to (71 

d(ln fl) =~v(C~- 1) (7) 
dT 

where ~v is the thermal coefficient of volume expansion. 
In the present work the values of Ca and [dOn fl)/dT]e 

are reported by an independent method which gives 
other expressions for Ca and [dOn fl)/dT]e in terms of 
the derivatives of the interatomic potential energy 
functions. Two potential energy functions are used to 
compute two sets of these values and the results are 
compared with the values obtained from previous ex- 
pressions. The utility of these parameters is also dis- 
cussed. 

Theoretical 

The potential energy per ion pair of an ionic crystal 
can be written 

~e ~ 
~o(r) . . . . .  +f(r) (8) 

r 

where a is the Madelung constant, r the interionic dis- 
tance and f(r) includes the overlap repulsive and van 
der Waals terms. 
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In terms of volume, equation (8) may be written 

F(v) = °~e2 
- v----- ~ + f ( v )  (9) 

where n = ½. 
The adiabatic compressibility may be written (Grfin- 

eisen, 1912) 

&=l~oo(V/Vo)t.+ 2-~(.+ l +w~ (10) 
where 

V(On+ I)f'(Vo) ( l l )  
/30o= - n~eZ[(n+ 1)f'(Vo)+Vof"fVo)] 

w = [Vo(~ + 2)f"(Vo) + v]f'"(Vo)]/[(y + 1)f'(vo) + vof"(Vo)] 

(12) 
and 

x=[(~ + 1)f'(Vo) + Vof"(Vo)]/[(n + 1)f'(Vo) + Vof"(vo)]. 
(13) 

Hence 

d(ln fl) -c~v[n+2-x(n+l+w)] (14) 
dT  

o r  

d(ln ,B) 
dT = ~  x 

z . . . . . .  7~eZ(~- n)i 
(?+ 1)f'(Vo)--Vo(~+ 1)f"fVo)-VoJ tVo)+ - ~ ¥ r i  [ 

1 
(~+ 1 ) f ' ( V o ) + V o f " ( V o ) + ~ v T ~  -#-fi [ 

(15) 

where if(O, f"(v) and f '"(v) refer to the first, second 
and third derivatives of f (O,  respectively. 

In the present investigation, two forms of the inter- 
atomic potential energy function have been used to 
evaluate (71 and [d(ln fl)/dT]v for the f.c.c, and b.c.c. 
type of ionic crystals from equation (15). 

These functions can be expressed in terms of volume 
a s  

(a) The logarithmic potential (Thakur, 1975c): 

F(v)= ~eZ C D [ B ]  
on /)6n VS" + A  log 1+ -~ -  (16) 

(b) The Rydberg (1931) potential: 

F(v) = - - -  
~e 2 

+ 2 exp (-bv")-IlV" exp (-by") (17) 

where A, 2, b, B, and/ t  are the potential parameters and 
the remaining terms have their usual meanings. 

Equation (16) has been successfully used earlier 
(Thakur, 1973, 1974a, 1975b, c, d, e; Thakur & 
Pandey, 1974b, 1975). The Rydberg function has also 
been used (Varshni & Bloore, 1963; Sharma, 1970, 
1973; Sharma & Jain, 1973; Mishra & Sharma, 1973). 

Method of calculation 
Two methods are available for calculating the potential 
parameters of equations (16) and (17). For a review of 
both methods, see Pandey (1970) and Kachhava & 
Saxena (1963). The first method enforces the crystal 
stability and compressibility conditions to evaluate the 
potential parameters. This method utilizes experimental 
compressiblity values at 0 K, which are found by extra- 
polation and are thus uncertain. The second method 
(Kachhava & Saxena, 1963) utilizes molecule stability 
and force constant conditions to evaluate the param- 
eters B and b, and utilizes the crystal stability condition 
to evaluate A, 2 and p. Here the latter method has been 
used for the computation of the potential parameters, 
since it utilizes molecular constants known to a high 
degree of accuracy. 

Values of ? occurring in equation (15) can be com- 
puted from 

ro ~o'"(ro) (18) 
7= 6 (p"(r0) 

where ~0"(r) and (p'"(r) are the second and third deriv- 
atives of ~o(r), respectively. 

Table 1. Values of [d(ln fl)/dT]vfor alkali halide crystals (in 10 -5 deg -1) 

From From From From 
From From equations equations equations equations Fumi & 

Alkali equations equations (3), (4) and (3), (4) and (3), (5) and (3), (5) and Tosi Huggins 
halides (15) and (16) (15) and (17) (16) (17) (16) (17) (1964) (1937) 
LiCI 40.39 34.58 45.67 34-98 54-38 43-68 70 70 
LiBr 46.03 37.05 52.05 33.45 61.95 43.35 80 80 
LiI 46.16 32.49 49.72 33.96 60.42 43.66 50 80 
NaC1 28.32 31.32 48.72 30.84 52.64 38.76 62 70 
NaBr 39.96 40.02 43.96 31.99 51.99 40.51 41 80 
NaI 43.63 38.02 48.82 36.86 58.32 46.37 10 80 
KF 34.67 30.56 34.34 31.43 41.47 38.56 10 10 
KC1 34.71 24.39 29.64 29.99 47.23 37.57 35 50 
KBr 36.00 32.76 40.32 31.92 48.24 39.84 48 60 
KI 27.54 34"83 70"61 33"75 79"98 42"66 34 60 
RbC1 32"83 29"92 37-04 30"35 44"17 37.48 40 78 
RbBr 34-77 31.12 39"10 31"81 46"63 39"33 38 80 
RbI 38"44 33"15 42"70 33"54 51-21 41 "05 46 80 
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°~ 

U~ 

The values of re, r0, ke, F(Vo) and fl0 were taken from 
Pandey (1970), D, from Rittner (1951) and ~ from 
Keer (1972). 

Values of [dOn fl)/dT]p and C~ obtained from the 
various expressions are reported in Tables 1 and 2, 
together with values reported by Fumi & Tosi (1964), 
Huggins (1937), and Mathur & Singh (1968). The most 
reliable experimental values of C~ are due to Chang & 
Barsch (1971) and Overton (1962) whose reported val- 
ues obtained from the ultrasonic pulse superposition 
technique are accurate to within + 0.07. Their values 
for NaCI, RbC1, RbBr and RbI are also listed in 
Table 2. 

ID 

° 

t~ 0 ~,--~,.-~,-~O~t ~ 
~ ~ 7..,~ . . . .  

2 

N ~-u 4r ~,~ 4r 
e,i o ~  
~D 

~ ~ ~ l ~ l O ~  

Importance of the Moelwyn-Hughes parameter (C~) 

C~ is of importance in studying the macroscopic be- 
haviour of solids as well as polar and non-polar liquids. 
It is given by (Moelwyn-Hughes, 1964) 

Cl=[d(1/fl)] [d(1/fl) dr]  [ d(1/fl)] 
--d-/3- r = dv d P  T = -  V ~  dv J r  

= _  [ f i r  d(1/fl) fir aft [d(lnfl)  l 
t 3  r r ~-fifl2 Ld(ln r) ] 

(19) 

where v=klr 3 and kt is the crystal structure constant. 
Thus from equation (19) the plot of ln fl against 

In r for a particular crystal should be a straight line 
with slope 3C1. No experiment has, as yet, been carried 
out to find the value of the compressibility for different 
values of the internuclear distance in a crystal. From 
equation (19) it is possible to compute the value of the 
compressibility at any particular value of the inter- 
nuclear distance r. Integrating equation (19) one gets 

o r  

In ]?+ln K=3C1 In r (20) 

ilK= r 3cl (21) 

where In K is the constant of integration which can be 
computed from the equilibrium conditions i.e. at r = ro, 
fl=flo and thus K=r~Cl/flo. For Nat1,  r0=2.82 A, rio = 
3.97 x 10 -12 bar -1 and C1=6.614, thus K=2.1538 x 
102°. fl has been plotted against r for NaC1 in Fig. 1 
according to equation (21). Fig. 1 also includes the 
single experimental point for NaC1. It is seen that fl 
decreases very slowly as r is decreased from the equi- 
librium internuclear distance (r0), but increases very 
quickly with increase of r above r0. fl is nearly zero at 
r < 2.2/~. The curve predicts that it is possible to re- 
duce the internuclear distance from r =  ro to r = 2 . 2  A 
by compression, a conclusion which will be of interest 
to experimental workers who wish to investigate these 
crystals at internuclear distances other than the equi- 
librium. 

We have plotted ln fl0 against In r0 for the alkali 
halides in Fig. 2, which shows that all the members of 
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a particular alkali metal fall on a straight line. This 
regularity is most pronounced for Li, Na, K, and Rb. 
For Cs one point, CsF, is away from the line, owing to 
its different crystal structure. It is found that the ab- 
solute value of the slope of the curves in Fig. 2 is nearly 
the same for all the groups. This regularity in the values 
of In t0 gives a ready check for incorrect data and can 
help to predict the value of t0 for any member of a 
group for which data are not available. Moreover, the 
nature of the curve for any other group may also be 
predicted. This regularity may help to correct the 
highly uncertain data of heavy metal halides and al- 
kaline earth chalcides. 

Since the plot of In t0 against In r0 is a straight line 
for a particular group of alkali halides, we suggest the 
following equation, similar to equation (19) 

c;. [ don ] (22) 
d(ln ro) J r 

where C~ is another constant. 
Analogous to equation (21) for one crystal, we get, 

after integrating equation (22), the following relation 
between to and r0 for a group of crystals 

K '  f l o=  rSo c' ' (23) 

where K'  is a constant which is different for different 
groups. Values of C~ and K'  obtained from Fig. 2 are 
reported in Table 3, which shows that the values of C~ 
and K'  are nearly the same for crystals of f.c.c, struc- 
ture, while for crystals of b.c.c, structure, K'  is slightly 
greater and C~ smaller. Taking the mean of K'  and C~ 
from Table 3 for f.c.c, structures we have plotted t0 
against r0 in Fig. 3 according to equation (23). It is 
found that all 16 experimental points are close to the 
theoretical curve. Thus equation (23) may be used for 
the computation of t0 for those crystals for which r0 
is known. 

From equations (23) and (25) 

9klK' H (26) 
¢' ( ro)= r o3C.,_, - rW 

where H=9klK' and m = ( 3 C ~ - l ) ,  and kt is the 
crystal structure constant; which is 2 for the NaC1 and 
1.5 for the CsCI structure. 

Thus, if reliable compressibility data is lacking, we 
suggest the use of equations (24) and (26) for the com- 
putation of the parameters of the potential energy 
functions. 

20 

1 5 ~  

2 1 o -  
0 

5 - -  

0 J 
I I I 

0 1 2 3 
r (~) 

Fig. 1. Variation of compressibility with internuclear distance 
of NaC1 crystal. 

Table 3. Values of K' and C~ of alkali halide crystals 

Crystal 
group K' C~. 

f.c.c. 
LiX 8.511 1.107 
NaX 10.839 1-159 
KX 10.351 1.118 
RbX 10.965 1.123 

b.c.c. 
CsX 12.162 1.053 

As discussed above, two methods are available for 
calculating the potential parameters of a function ~0(r). 
The first method enforces the following crystal stability 
and compressibility conditions: 

(p' (ro) = 0  (24) 

9klro (25) ¢'(ro)- 

where ~0'(r) refers to the first derivative of ¢(r). 

1'0 
oLiX of/ / 
• NaX / z#" 7 

/ f  / 
v CsX 

o._ o ,lX/ 
~o 

--0"4 - / ° / ' '  

0"I- 
I I I I 

0"3 0"4 0"5 0'6 
log ro 

Fig. 2. Plot of log to against log ro for alkali halide crystals. 
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lO- o LiX ,x! 

• NaX / 17 
o K X  

t, RbX et~ / 
/ 

O/V -~ 5 -  , 

o /so 
.~0 

I I 
0 2 3 4 

r0 (A) 
Fig. 3. Variation of compressibility (flo) with internuclear dis- 

tance (r0) according to equation (23) for f.c.c, crystals to- 
gether with the experimental points. 

Following Moelwyn-Hughes (1964) it is also possible 
to compute the sum of the exponents (m' +n) of the 
Mie (1903) potential, which has been applied to a 
variety of physicochemical systems, by the relation 

m' + n= 3(C1- 2) . 
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